SHELL Base Filling Lime Based Compound

Shell Base filling compound is a type of mortar composed of lime and an aggregate such as sand, mixed with water. It is one of the oldest known types of mortar, dating back to the 4th century BC and widely used in Ancient Rome and Greece, when it largely replaced the clay and gypsum mortars common to Ancient Egyptianconstruction.

With the introduction of ordinary portland cement (OPC) during the 19th century the use of lime mortar in new constructions gradually declined, largely due to portland's ease of use, quick setting, and high compressive strength. However the soft, porous properties of lime mortar provide certain advantages when working with softer building materials such as natural stone and terracotta. For this reason, while OPC continues to be commonly used in brick and concrete construction, in the repair and restoration of brick and stone-built structures originally built using lime mortar, the use of OPC has largely been discredited.
Despite its enduring utility over many centuries, lime mortar's effectiveness as a building material has not been well understood; time-honoured practices were based on tradition, folklore and trade knowledge, vindicated by the vast number of old buildings that remain standing. Only during the last few decades has empirical testing provided a scientific understanding of its remarkable durability.
Lime mortar is not as strong in compression as OPC mortar, but both are sufficiently strong for construction of non-high-rise domestic properties.
Lime mortar does not adhere as strongly to masonry as OPC. This is an advantage with softer types of masonry, where use of cement in many cases eventually results in cement pulling away some masonry material when it reaches the end of its life. The mortar is a sacrificial element which should be weaker than the bricks so it will crack before the bricks. It is less expensive to replace cracked mortar than cracked bricks.
Under cracking conditions, OPC breaks, whereas lime often produces numerous microcracks if the amount of movement is small. These microcracks recrystallise through the action of 'free lime' effectively self-healing the affected area.
Historic buildings are frequently constructed with relatively soft masonry units (e.g. soft brick and many types of stone), and minor movement in such buildings is quite common due to the nature of the foundations. This movement breaks the weakest part of the wall, and with OPC mortar this is usually the masonry. When lime mortar is used, the lime is the weaker element, and the mortar cracks in preference to the masonry. This results in much less damage, and is relatively simple to repair.
Lime mortar is more porous than cement mortars, and it wicks any dampness in the wall to the surface where it evaporates. Thus any salt content in the water crystallises on the lime, damaging the lime and thus saving the masonry. Cement on the other hand evaporates water less than soft brick, so damp issues are liable to cause salt formation and spalling on brick surfaces and consequent disintegration of bricks. This damp evaporation ability is widely referred to as 'breathability'.
Lime mortar should not be used below temperatures of 5 °C (41 °F) and takes longer to set so it should be protected from freezing for three months.
Usually any dampness in the wall will cause the lime mortar to change colour, indicating the presence of moisture. The effect will create an often mottled appearance of a limewashed wall. As the moisture levels within a wall alter, so will the shade of a limewash. The darker the shade of limewash, the more pronounced this effect will become.
A load of mixed lime mortar may be allowed to sit as a lump for some time, without it drying out (it may get a thin crust). When ready to use, this lump may be remixed ('knocked up') again and then used. Traditionally on building sites, prior to the use of mechanical mixers, the lime putty (slaked on site in a pit) was mixed with sand by a labourer who would "beat and ram" the mix with a "larry" (a wide hoe with large holes). This was then covered with sand and allowed to sit for a while (from days to weeks) - a process known as 'banking'. This lump was then remixed and used as necessary. This process cannot be done with OPC.